Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(5): 101, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607449

RESUMO

KEY MESSAGE: The pepper mutants ('221-2-1a' and '1559-1-2h') with very low pungency were genetically characterized. The Pun4 locus, responsible for the reduced pungency of the mutant fruits, was localized to a 208 Mb region on chromosome 6. DEMF06G16460, encoding 3-ketoacyl-CoA synthase, was proposed as a strong candidate gene based on the genetic analyses of bulked segregants, DEG, and expression analyses. Capsaicinoids are unique alkaloids present in pepper (Capsicum spp.), synthesized through the condensation of by-products from the phenylpropanoid and branched-chain fatty acid pathways, and accumulating in the placenta. In this study, we characterized two allelic ethyl methanesulfonate-induced mutant lines with extremely low pungency ('221-2-1a' and '1559-1-2h'). These mutants, derived from the pungent Korean landrace 'Yuwolcho,' exhibited lower capsaicinoid content than Yuwolcho but still contained a small amount of capsaicinoid with functional capsaicinoid biosynthetic genes. Genetic crosses between the mutants and Yuwolcho or pungent lines indicated that a single recessive mutation was responsible for the low-pungency phenotype of mutant 221-2-1a; we named the causal locus Pungency 4 (Pun4). To identify Pun4, we combined genome-wide polymorphism analysis and transcriptome analysis with bulked-segregant analysis. We narrowed down the location of Pun4 to a 208-Mb region on chromosome 6 containing five candidate genes, of which DEMF06G16460, encoding a 3-ketoacyl-CoA synthase associated with branched-chain fatty acid biosynthesis, is the most likely candidate for Pun4. The expression of capsaicinoid biosynthetic genes in placental tissues in Yuwolcho and the mutant was consistent with the branched-chain fatty acid pathway playing a pivotal role in the lower pungency observed in the mutant. We also obtained a list of differentially expressed genes in placental tissues between the mutant and Yuwolcho, from which we selected candidate genes using gene co-expression analysis. In summary, we characterized the capsaicinoid biosynthesis-related locus Pun4 through integrated of genetic, genomic, and transcriptome analyses. These findings will contribute to our understanding of capsaicinoid biosynthesis in pepper.


Assuntos
Capsicum , Gravidez , Feminino , Humanos , Capsicum/genética , Placenta , Alelos , Cânfora , Ácidos Graxos
2.
Plant J ; 118(2): 469-487, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38180307

RESUMO

Fruit color is one of the most important traits in peppers due to its esthetic value and nutritional benefits and is determined by carotenoid composition, resulting from diverse mutations of carotenoid biosynthetic genes. The EMS204 line, derived from an EMS mutant population, presents bright-red color, compared with the wild type Yuwolcho cultivar. HPLC analysis indicates that EMS204 fruit contains more zeaxanthin and less capsanthin and capsorubin than Yuwolcho. MutMap was used to reveal the color variation of EMS204 using an F3 population derived from a cross of EMS204 and Yuwolcho, and the locus was mapped to a 2.5-Mbp region on chromosome 2. Among the genes in the region, a missense mutation was found in ZEP (zeaxanthin epoxidase) that results in an amino acid sequence alteration (V291 → I). A color complementation experiment with Escherichia coli and ZEP in vitro assay using thylakoid membranes revealed decreased enzymatic activity of EMS204 ZEP. Analysis of endogenous plant hormones revealed a significant reduction in abscisic acid content in EMS204. Germination assays and salinity stress experiments corroborated the lower ABA levels in the seeds. Virus-induced gene silencing showed that ZEP silencing also results in bright-red fruit containing less capsanthin but more zeaxanthin than control. A germplasm survey of red color accessions revealed no similar carotenoid profiles to EMS204. However, a breeding line containing a ZEP mutation showed a very similar carotenoid profile to EMS204. Our results provide a novel breeding strategy to develop red pepper cultivars containing high zeaxanthin contents using ZEP mutations.


Assuntos
Capsicum , Oxirredutases , Capsicum/genética , Capsicum/metabolismo , Zeaxantinas/metabolismo , Frutas/metabolismo , Mutação com Perda de Função , Melhoramento Vegetal , Carotenoides/metabolismo , Xantofilas
3.
Hortic Res ; 11(1): uhad233, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222822

RESUMO

Genome editing (GE) using CRISPR/Cas systems has revolutionized plant mutagenesis. However, conventional transgene-mediated GE methods have limitations due to the time-consuming generation of stable transgenic lines expressing the Cas9/single guide RNA (sgRNA) module through tissue cultures. Virus-induced genome editing (VIGE) systems have been successfully employed in model plants, such as Arabidopsis thaliana and Nicotiana spp. In this study, we developed two VIGE methods for Solanaceous plants. First, we used the tobacco rattle virus (TRV) vector to deliver sgRNAs into a transgenic tomato (Solanum lycopersicum) line of cultivar Micro-Tom expressing Cas9. Second, we devised a transgene-free GE method based on a potato virus X (PVX) vector to deliver Cas9 and sgRNAs. We designed and cloned sgRNAs targeting Phytoene desaturase in the VIGE vectors and determined optimal conditions for VIGE. We evaluated VIGE efficiency through deep sequencing of the target gene after viral vector inoculation, detecting 40.3% and 36.5% mutation rates for TRV- and PVX-mediated GE, respectively. To improve editing efficiency, we applied a 37°C heat treatment, which increased the editing efficiency by 33% to 46% and 56% to 76% for TRV- and PVX-mediated VIGE, respectively. To obtain edited plants, we subjected inoculated cotyledons to tissue culture, yielding successful editing events. We also demonstrated that PVX-mediated GE can be applied to other Solanaceous crops, such as potato (Solanum tuberosum) and eggplant (Solanum melongena). These simple and highly efficient VIGE methods have great potential for generating genome-edited plants in Solanaceous crops.

4.
Theor Appl Genet ; 136(11): 233, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878062

RESUMO

KEY MESSAGE: Segmental introgression and advanced backcross lines were developed and validated as important tools for improving agronomically important traits in pepper, offering improved sensitivity in detecting quantitative trait loci for breeding. Segmental introgression lines (SILs) and advanced backcross lines (ABs) can accelerate genetics and genomics research and breeding in crop plants. This study presents the development of a complete collection of SILs and ABs in pepper using Capsicum annuum cv. 'CM334' as the recipient parent and Capsicum baccatum 'PBC81', which displays various agronomically important traits including powdery mildew and anthracnose resistance, as donor parent. Using embryo rescue to overcome abortion in interspecific crosses, and marker-assisted selection with genotyping-in-thousands by sequencing (GT-seq) to develop SILs and ABs containing different segments of the C. baccatum genome, we obtained 63 SILs and 44 ABs, covering 94.8% of the C. baccatum genome. We characterized them for traits including powdery mildew resistance, anthracnose resistance, anthocyanin accumulation, trichome density, plant architecture, and fruit morphology. We validated previously known loci for these traits and discovered new sources of variation and quantitative trait loci (QTLs). A total of 15 QTLs were identified, including four for anthracnose resistance with three novel loci, seven for plant architecture, and four for fruit morphology. This is the first complete collection of pepper SILs and ABs validated for agronomic traits and will enhance QTL detection and serve as valuable breeding resources. Further, these SILs and ABs will be useful for comparative genomics and to better understand the genetic mechanisms underlying important agronomic traits in pepper, ultimately leading to improved crop productivity and sustainability.


Assuntos
Capsicum , Resistência à Doença , Feminino , Gravidez , Humanos , Resistência à Doença/genética , Capsicum/genética , Melhoramento Vegetal , Agricultura , Frutas
5.
Front Plant Sci ; 14: 1151765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841628

RESUMO

Pepper (Capsicum spp.) is a vegetable and spice crop in the Solanaceae family with many nutritional benefits for human health. During several decades, horticultural traits, including disease resistance, yield, and fruit quality, have been improved through conventional breeding methods. Nevertheless, cultivar development is a time-consuming process because of the long generation time of pepper. Recently, speed breeding has been introduced as a solution for shorting the breeding cycle in long-day or day-neutral field crops, but there have been only a few studies on speed breeding in vegetable crops. In this study, a speed breeding protocol for pepper was developed by controlling the photoperiod and light quality. Under the condition of a low red (R) to far-red (FR) ratio of 0.3 with an extended photoperiod (Epp) of 20 h (95 ± 0 DAT), the time to first harvest was shortened by 75 days after transplant (DAT) compared to that of the control treatment (170 ± 2 DAT), suggesting that Epp with FR light is an essential factor for flowering in pepper. In addition, we established the speed breeding system in a greenhouse with a 20 h photoperiod and a 3.8 R:FR ratio and promoted the breeding cycle of C. annuum for 110 days from seed to seed. To explain the accelerated flowering response to the Epp and supplemented FR light, genome-wide association study (GWAS) and gene expression analysis were performed. As a result of the GWAS, we identified a new flowering gene locus for pepper and suggested four candidate genes for flowering (APETALA2 (AP2), WUSCHEL-RELATED HOMEOBOX4 (WOX4), FLOWERING LOCUS T (FT), and GIGANTEA (GI)). Through expression analysis with the candidate genes, it appeared that Epp and FR induced flowering by up-regulating the flowering-promoting gene GI and down-regulating FT. The results demonstrate the effect of a combination of Epp and FR light by genetic analysis of flowering gene expression. This is the first study that verifies gene expression patterns associated with the flowering responses of pepper in a speed breeding system. Overall, this study demonstrates that speed breeding can shorten the breeding cycle and accelerate genetic research in pepper through reduced generation time.

6.
BMC Plant Biol ; 23(1): 389, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563545

RESUMO

BACKGROUND: Anthracnose is a fungal disease caused by Colletotrichum spp. that has a significant impact on worldwide pepper production. Colletotrichum scovillei is the most common pathogenic anthracnose-causing species in the Republic of Korea. RESULTS: The resistances of 197 pepper (Capsicum chinense) accessions deposited in Korea's National Agrobiodiversity Center were evaluated for their response against the virulent pathogens Colletotrichum acutatum isolate 'KSCa-1' and C. scovillei isolate 'Hana') in the field and in vitro methods for three consecutive years (2018 to 2020). The severity of the disease was recorded and compared between inoculation methods. Six phenotypically resistant pepper accessions were selected based on three years of disease data. All of the selected resistant pepper accessions outperformed the control resistant pepper in terms of resistance (PI 594,137). A genome-wide association study (GWAS) was carried out to identify single nucleotide polymorphisms (SNPs) associated with anthracnose resistance. An association analysis was performed using 53,518 SNPs and the disease score of the 2020 field and in vitro experiment results. Both field and in vitro experiments revealed 25 and 32 significantly associated SNPs, respectively. These SNPs were found on all chromosomes except Ch06 and Ch07 in the field experiment, whereas in the in vitro experiment they were found on all chromosomes except Ch04 and Ch11. CONCLUSION: In this study, six resistant C. chinense accessions were selected. Additionally, in this study, significantly associated SNPs were found in a gene that codes for a protein kinase receptor, such as serine/threonine-protein kinase, and other genes that are known to be involved in disease resistance. This may strengthen the role of these genes in the development of anthracnose resistance in Capsicum spp. As a result, the SNPs discovered to be strongly linked in this study can be used to identify a potential marker for selecting pepper material resistant to anthracnose, which will assist in the development of resistant varieties.


Assuntos
Capsicum , Colletotrichum , Estudo de Associação Genômica Ampla , Capsicum/genética , Capsicum/microbiologia , Resistência à Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Quinases/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
7.
Hortic Res ; 9: uhac204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467271

RESUMO

Capsaicinoids provide chili peppers (Capsicum spp.) with their characteristic pungency. Several structural and transcription factor genes are known to control capsaicinoid contents in pepper. However, many other genes also regulating capsaicinoid contents remain unknown, making it difficult to develop pepper cultivars with different levels of capsaicinoids. Genomic selection (GS) uses genome-wide random markers (including many in undiscovered genes) for a trait to improve selection efficiency. In this study, we predicted the capsaicinoid contents of pepper breeding lines using several GS models trained with genotypic and phenotypic data from a training population. We used a core collection of 351 Capsicum accessions and 96 breeding lines as training and testing populations, respectively. To obtain the optimal number of single nucleotide polymorphism (SNP) markers for GS, we tested various numbers of genome-wide SNP markers based on linkage disequilibrium. We obtained the highest mean prediction accuracy (0.550) for different models using 3294 SNP markers. Using this marker set, we conducted GWAS and selected 25 markers that were associated with capsaicinoid biosynthesis genes and quantitative trait loci for capsaicinoid contents. Finally, to develop more accurate prediction models, we obtained SNP markers from GWAS as fixed-effect markers for GS, where 3294 genome-wide SNPs were employed. When four to five fixed-effect markers from GWAS were used as fixed effects, the RKHS and RR-BLUP models showed accuracies of 0.696 and 0.689, respectively. Our results lay the foundation for developing pepper cultivars with various capsaicinoid levels using GS for capsaicinoid contents.

8.
Hortic Res ; 9: uhac210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467270

RESUMO

Pepper (Capsicum annuum) is an important vegetable crop that has been subjected to intensive breeding, resulting in limited genetic diversity, especially for sweet peppers. Previous studies have reported pepper draft genome assemblies using short read sequencing, but their capture of the extent of large structural variants (SVs), such as presence-absence variants (PAVs), inversions, and copy-number variants (CNVs) in the complex pepper genome falls short. In this study, we sequenced the genomes of representative sweet and hot pepper accessions by long-read and/or linked-read methods and advanced scaffolding technologies. First, we developed a high-quality reference genome for the sweet pepper cultivar 'Dempsey' and then used the reference genome to identify SVs in 11 other pepper accessions and constructed a graph-based pan-genome for pepper. We annotated an average of 42 972 gene families in each pepper accession, defining a set of 19 662 core and 23 115 non-core gene families. The new pepper pan-genome includes informative variants, 222 159 PAVs, 12 322 CNVs, and 16 032 inversions. Pan-genome analysis revealed PAVs associated with important agricultural traits, including potyvirus resistance, fruit color, pungency, and pepper fruit orientation. Comparatively, a large number of genes are affected by PAVs, which is positively correlated with the high frequency of transposable elements (TEs), indicating TEs play a key role in shaping the genomic landscape of peppers. The datasets presented herein provide a powerful new genomic resource for genetic analysis and genome-assisted breeding for pepper improvement.

9.
Front Plant Sci ; 13: 922963, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186014

RESUMO

Chlorophylls and carotenoids are synthesized in the chloroplast and chromoplast, respectively. Even though the two pigments are generated from the same precursor, the genetic correlation between chlorophyll and carotenoid biosynthesis has not yet been fully understood. We investigated the genetic correlation of chlorophyll and carotenoid biosynthesis during fruit ripening. Two recombinant inbred lines populations, "Long Sweet" × "AC2212" ("LA") RILs derived from a cross between Capsicum annuum "Long Sweet" with light-green and light-red fruit and C. annuum "AC2212" with dark-green and brown-fruit and "3501 (F)" × "3509 (C)" ("FC") RILs from C. annuum "3501" with dark-green and dark-red fruit and C. annuum "3509" with intermediate green and light-red fruit, were used. As the fruit ripened, three accessions produced high levels of xanthophyll. The dark-green immature fruit accumulated more total carotenoids than the light-green fruit. This trend corresponded to the expression pattern of 1-deoxy-d-xylulose 5-phosphate synthase (DXS) and CaGLK2 genes during fruit development. The expression levels of DXS and CaGLK2 in the dark-green accession "3501" were significantly higher than those of "3509" and "Long Sweet" during the early stages of fruit development. Furthermore, the genotype analysis of the transcription factor controlling chloroplast development (CaGLK2) in LA RILs revealed that CaGLK2 expression affected both carotenoid and chlorophyll contents. The single nucleotide polymorphism (SNP) linkage maps were constructed using genotyping-by-sequencing (GBS) for the two populations, and QTL analysis was performed for green fruit color intensity and carotenoid content. The QTL (LA_BG-CST10) for capsanthin content in LA RILs located at 24.4 to 100.4 Mbp on chromosome 10 was overlapped with the QTL (FC15-Cap10) for capsanthin content in FC RILs. Three QTLs for capsanthin content, American spice trade association (ASTA) value, and immature green fruit color intensity were also overlapped from 178.2 to 204 Mbp on chromosome 10. At the location, 151.6 to 165 Mbp on chromosome 8, QTLs (FC15-tcar8, FC17-ASTA8.1, and FC17-ASTA8.2) for total carotenoid content and ASTA value were discovered, and this region contained 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase (MCT), which is involved in the MEP pathway. This result is the first report to show the correlation between carotenoid and chlorophyll biosynthesis in pepper. This research will expand our understanding of the mechanism of the chloroplast-to-chromoplast transition and the development of high pigment pepper varieties.

10.
Front Plant Sci ; 13: 884338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615119

RESUMO

Flower production provides the foundation for crop yield and increased profits. Capsicum annuum is a pepper species with a sympodial shoot structure with solitary flowers. By contrast, C. chinense produces multiple flowers per node. C. annuum accounts for 80% of pepper production worldwide. The identification of C. chinense genes that control multiple flowers and their transfer into C. annuum may open the way to increasing fruit yield. In this study, we dissected the genetic factors were dissected controlling the multiple-flower-per-node trait in Capsicum. 85 recombinant inbred lines (RILs) between the contrasting C. annuum 'TF68' and C. chinense 'Habanero' accessions were phenotyped and genotyped. Quantitative Trait Loci (QTL) analysis identified four novel QTLs on chromosomes 1, 2, 7, and 11 that accounted for 65% of the total phenotypic variation. Genome-wide association study was also performed on a panel of 276 genotyped and phenotyped C. annuum accessions, which revealed 28 regions significantly associated with the multiple-flower trait, of which three overlapped the identified QTLs. Five candidate genes involved in the development of the shoot and flower meristems were identified and these genes could cause multiple flowers per node in pepper. These results contribute to our understanding of multiple flower formation in Capsicum and will be useful to develop high-yielding cultivars.

11.
PLoS One ; 17(2): e0264026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35176091

RESUMO

Disease caused by Pepper yellow leaf curl virus (PepYLCV) is one of the greatest threats to pepper (Capsicum spp.) cultivation in the tropics and subtropics. Resistance to PepYLCV was previously identified in a few Capsicum accessions, but no resistance QTLs have been mapped. This study aimed to elucidate the genetics of PepYLCV resistance in C. annuum L. Augmented inoculation by the viruliferous whitefly Bemisia tabaci was used to evaluate parental lines and an F2 segregating population derived from a cross between resistant C. annuum line LP97 and susceptible C. annuum line ECW30R. Final evaluation was performed six weeks after inoculation using a standardized 5-point scale (0 = no symptoms to 4 = very severe symptoms). A high-density linkage map was constructed using genotyping-by-sequencing (GBS) to identify single-nucleotide polymorphism (SNP) markers associated with PepYLCV resistance in the F2 population. QTL analysis revealed three QTLs, peplcv-1, peplcv-7, and peplcv-12, on chromosomes P1, P7, and P12, respectively. Candidate genes associated with PepYLCV resistance in the QTL regions were inferred. In addition, single markers Chr7-LCV-7 and Chr12-LCV-12 derived from the QTLs were developed and validated in another F2 population and in commercial varieties. This work thus provides not only information for mapping PepYLCV resistance loci in pepper but also forms the basis for future molecular analysis of genes involved in PepYLCV resistance.


Assuntos
Begomovirus/fisiologia , Capsicum/genética , Cromossomos de Plantas/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Capsicum/imunologia , Capsicum/virologia , Mapeamento Cromossômico , Resistência à Doença/imunologia , Genótipo , Doenças das Plantas/imunologia , Doenças das Plantas/virologia
12.
Front Plant Sci ; 12: 769473, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764974

RESUMO

Genotyping by sequencing (GBS) enables genotyping of multiple loci at low cost. However, the single nucleotide polymorphisms (SNPs) revealed by GBS tend to be randomly distributed between individuals, limiting their direct comparisons without applying the various filter options to obtain a comparable dataset of SNPs. Here, we developed a panel of a multiplex targeted sequencing method, genotyping-in-thousands by sequencing (GT-seq), to genotype SNPs in Capsicum spp. Previously developed Fluidigm® SNP markers were converted to GT-seq markers and combined with new GT-seq markers developed using SNP information obtained through GBS. We then optimized multiplex PCR conditions: we obtained the highest genotyping rate when the first PCR consisted of 25 cycles. In addition, we determined that 101 primer pairs performed best when amplifying target sequences of 79 bp. We minimized interference of multiplex PCR by primer dimer formation using the PrimerPooler program. Using our GT-seq pipeline on Illumina Miseq and Nextseq platforms, we genotyped up to 1,500 (Miseq) and 1,300 (Nextseq) samples for the optimum panel size of 100 loci. To allow the genotyping of Capsicum species, we designed 332 informative GT-seq markers from Fluidigm SNP markers and GBS-derived SNPs. This study illustrates the first application of GT-seq in crop plants. The GT-seq marker set developed here will be a useful tool for molecular breeding of peppers in the future.

13.
Front Microbiol ; 12: 694136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484141

RESUMO

Phytophthora capsici is an oomycete pathogen responsible for damping off, root rot, fruit rot, and foliar blight in popular vegetable and legume crops. The existence of distinct aggressiveness levels and physiological races among the P. capsici population is a major constraint to developing resistant varieties of host crops. In the present study, we compared the genomes of three P. capsici isolates with different aggressiveness levels to reveal their genomic differences. We obtained genome sequences using short-read and long-read technologies, which yielded an average genome size of 76 Mbp comprising 514 contigs and 15,076 predicted genes. A comparative genomic analysis uncovered the signatures of accelerated evolution, gene family expansions in the pathogenicity-related genes among the three isolates. Resequencing two additional P. capsici isolates enabled the identification of average 1,023,437 SNPs, revealing the frequent accumulation of non-synonymous substitutions in pathogenicity-related gene families. Furthermore, pathogenicity-related gene families, cytoplasmic effectors and ATP binding cassette (ABC) transporters, showed expansion signals in the more aggressive isolates, with a greater number of non-synonymous SNPs. This genomic information explains the plasticity, difference in aggressiveness levels, and genome structural variation among the P. capsici isolates, providing insight into the genomic features related to the evolution and pathogenicity of this oomycete pathogen.

14.
Plant J ; 106(6): 1692-1707, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33825226

RESUMO

Phytoene synthase (PSY1), capsanthin-capsorubin synthase (CCS), and pseudo-response regulator 2 (PRR2) are three major genes controlling fruit color in pepper (Capsicum spp.). However, the diversity of fruit color in pepper cannot be completely explained by these three genes. Here, we used an F2 population derived from Capsicum annuum 'SNU-mini Orange' (SO) and C. annuum 'SNU-mini Yellow' (SY), both harboring functional PSY1 and mutated CCS, and observed that yellow color was dominant over orange color. We performed genotyping-by-sequencing and mapped the genetic locus to a 6.8-Mb region on chromosome 2, which we named CaOr. We discovered a splicing mutation in the zeaxanthin epoxidase (ZEP) gene within this region leading to a premature stop codon. HPLC analysis showed that SO contained higher amounts of zeaxanthin and total carotenoids in mature fruits than SY. A color complementation assay using Escherichia coli harboring carotenoid biosynthetic genes showed that the mutant ZEP protein had reduced enzymatic activity. Transmission electron microscopy of plastids revealed that the ZEP mutation affected plastid development with more rod-shaped inner membrane structures in chromoplasts of mature SO fruits. To validate the role of ZEP in fruit color formation, we performed virus-induced gene silencing of ZEP in the yellow-fruit cultivar C. annuum 'Micropep Yellow' (MY). The silencing of ZEP caused significant changes in the ratios of zeaxanthin to its downstream products and increased total carotenoid contents. Thus, we conclude that the ZEP genotype can determine orange or yellow mature fruit color in pepper.


Assuntos
Capsicum/genética , Carotenoides/metabolismo , Frutas/metabolismo , Oxirredutases/genética , Pigmentação/fisiologia , Polimorfismo de Nucleotídeo Único , Regulação da Expressão Gênica de Plantas/fisiologia , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Virus Res ; 291: 198192, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33058965

RESUMO

Geminiviruses cause devastating diseases in solanaceous crops, with the bipartite begomoviruses tomato yellow leaf curl Kanchanaburi virus (TYLCKaV) and pepper yellow leaf curl Thailand virus (PYLCThV) major threats in Southeast Asia. To determine the molecular mechanism of geminivirus infection, we constructed infectious clones of TYLCKaV and PYLCThV. Both constructs infected Nicotiana benthamiana, but only TYLCKaV could infect Solanum lycopersicum 'A39'. A genome-swapping of TYLCKaV with PYLCThV revealed the TYLCKaV-B genome segment as the determinant of TYLCKaV infectivity in tomato. We constructed five geminivirus clones with chimeric TYLCKaV-B and PYLCThV-B genome segments to narrow down the region determining TYLCKaV infectivity in tomato. Only chimeric clones carrying the TYLCKaV intergenic region (IR) showed infectivity in S. lycopersicum 'A39', indicating that the IR of TYLCKaV-B is essential for TYLCKaV infectivity in tomato. Our results provide a foundation for elucidating the molecular mechanism of geminivirus infection in plants.


Assuntos
Begomovirus/genética , Doenças das Plantas/virologia , Folhas de Planta/virologia , Solanum lycopersicum/virologia , Begomovirus/patogenicidade , Clonagem Molecular , DNA Intergênico/genética , DNA Viral/genética , Genoma Viral , Filogenia , Fatores de Virulência/genética
16.
Front Plant Sci ; 11: 570871, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193503

RESUMO

Pepper (Capsicum spp.) fruit-related traits are critical determinants of quality. These traits are controlled by quantitatively inherited genes for which marker-assisted selection (MAS) has proven insufficiently effective. Here, we evaluated the potential of genomic selection, in which genotype and phenotype data for a training population are used to predict phenotypes of a test population with only genotype data, for predicting fruit-related traits in pepper. We measured five fruit traits (fruit length, fruit shape, fruit width, fruit weight, and pericarp thickness) in 351 accessions from the pepper core collection, including 229 Capsicum annuum, 48 Capsicum baccatum, 48 Capsicum chinense, 25 Capsicum frutescens, and 1 Capsicum chacoense in 4 years at two different locations and genotyped these accessions using genotyping-by-sequencing. Among the whole core collection, considering its genetic distance and sexual incompatibility, we only included 302 C. annum complex (229 C. annuum, 48 C. chinense, and 25 C. frutescens) into further analysis. We used phenotypic and genotypic data to investigate genomic prediction models, marker density, and effects of population structure. Among 10 genomic prediction methods tested, Reproducing Kernel Hilbert Space (RKHS) produced the highest prediction accuracies (measured as correlation between predicted values and observed values) across the traits, with accuracies of 0.75, 0.73, 0.84, 0.83, and 0.82 for fruit length, fruit shape, fruit width, fruit weight, and pericarp thickness, respectively. Overall, prediction accuracies were positively correlated with the number of markers for fruit traits. We tested our genomic selection models in a separate population of recombinant inbred lines derived from two parental lines from the core collection. Despite the large difference in genetic diversity between the training population and the test population, we obtained moderate prediction accuracies of 0.32, 0.34, 0.50, and 0.48 for fruit length, fruit shape, fruit width, and fruit weight, respectively. This use of genomic selection for fruit-related traits demonstrates the potential use of core collections and genomic selection as tools for crop improvement.

17.
Plants (Basel) ; 9(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933000

RESUMO

The F-box proteins belong to a family of regulatory proteins that play key roles in the proteasomal degradation of other proteins. Plant F-box proteins are functionally diverse, and the precise roles of many such proteins in growth and development are not known. Previously, two low-temperature-sensitive F-box protein family genes (LTSF1 and LTSF2) were identified as candidates responsible for the sensitivity to low temperatures in the pepper (Capsicum chinense) cultivar 'sy-2'. In the present study, we showed that the virus-induced gene silencing of these genes stunted plant growth and caused abnormal leaf development under low-temperature conditions, similar to what was observed in the low-temperature-sensitive 'sy-2' line. Protein-protein interaction analyses revealed that the LTSF1 and LTSF2 proteins interacted with S-phase kinase-associated protein 1 (SKP1), part of the Skp, Cullin, F-box-containing (SCF) complex that catalyzes the ubiquitination of proteins for degradation, suggesting a role for LTSF1 and LTSF2 in protein degradation. Furthermore, transgenic Nicotiana benthamiana plants overexpressing the pepper LTSF1 gene showed an increased tolerance to low-temperature stress and a higher expression of the genes encoding antioxidant enzymes. Taken together, these results suggest that the LTSF1 and LTSF2 F-box proteins are a functional component of the SCF complex and may positively regulate low-temperature stress tolerance by activating antioxidant-enzyme activities.

18.
Front Plant Sci ; 11: 1100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793261

RESUMO

All modern pepper accessions are products of the domestication of wild Capsicum species. However, due to the limited availability of genome-wide association study (GWAS) data and selection signatures for various traits, domestication-related genes have not been identified in pepper. Here, to address this problem, we obtained data for major fruit-related domestication traits (fruit length, width, weight, pericarp thickness, and fruit position) using a highly diverse panel of 351 pepper accessions representing the worldwide Capsicum germplasm. Using a genotype-by-sequencing (GBS) method, we developed 187,966 genome-wide high-quality SNP markers across 230 C. annuum accessions. Linkage disequilibrium (LD) analysis revealed that the average length of the LD blocks was 149 kb. Using GWAS, we identified 111 genes that were linked to 64 significant LD blocks. We cross-validated the GWAS results using 17 fruit-related QTLs and identified 16 causal genes thought to be associated with fruit morphology-related domestication traits, with molecular functions such as cell division and expansion. The significant LD blocks and candidate genes identified in this study provide unique molecular footprints for deciphering the domestication history of Capsicum. Further functional validation of these candidate genes should accelerate the cloning of genes for major fruit-related traits in pepper.

19.
Front Plant Sci ; 11: 399, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328078

RESUMO

The diverse fruit colors of peppers (Capsicum spp.) are due to variations in carotenoid composition and content. Mature fruit color in peppers is regulated by three independent loci, C1, C2, and Y. C2 and Y encode phytoene synthase (PSY1) and capsanthin-capsorubin synthase (CCS), respectively; however, the identity of the C1 gene has been unknown. With the aim of identifying C1, we analyzed two pepper accessions with different fruit colors: Capsicum frutescens AC08-045 and AC08-201, whose fruits are light yellow and white, respectively. Ultra-performance liquid chromatography showed that the total carotenoid content was six times higher in AC08-045 than in AC08-201 fruits, with similar composition of main carotenoids and slight difference in minor components. These results suggest that a genetic factor in AC08-201 may down-regulate overall carotenoid biosynthesis. Analyses of candidate genes related to carotenoid biosynthesis and plastid abundance revealed that both accessions carry non-functional alleles of CCS, golden2-like transcription factor (GLK2), and PSY1. However, a nonsense mutation (C2571T) in PRR2, a homolog of Arabidopsis pseudo response regulator2-like (APRR2), was present in only AC08-201. In a population derived from a cross between AC08-045 and AC08-201, a SNP marker based on the nonsense mutation co-segregated fully with fruit color, implying that the mutation in PRR2 may cause the white color of AC08-201 fruits. Transmission electron microscopy (TEM) of AC08-201 fruit pericarp also showed less developed granum structure in chloroplast and smaller plastoglobule in chromoplast compared to those of AC08-045. Virus-induced gene silencing (VIGS) of PRR2 significantly reduced carotenoid accumulation in Capsicum annuum 'Micropep Yellow', which carries non-functional mutations in both PSY1 and CCS. Furthermore, sequence analysis of PSY1, CCS, and PRR2 in other white pepper accessions of C. annuum and Capsicum chinense showed that they commonly have non-functional alleles in PSY1, CCS, and PRR2. Thus, our data demonstrate that the fruit color locus C1 in Capsicum spp. corresponds to the gene PRR2.

20.
J Exp Bot ; 71(12): 3417-3427, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32219321

RESUMO

Phytoene synthase 1 (PSY1) and capsanthin-capsorubin synthase (CCS) are two major genes responsible for fruit color variation in pepper (Capsicum spp.). However, the role of PSY2 remains unknown. We used a systemic approach to examine the genetic factors responsible for the yellow fruit color of C. annuum 'MicroPep Yellow' (MY) and to determine the role of PSY2 in fruit color. We detected complete deletion of PSY1 and a retrotransposon insertion in CCS. Despite the loss of PSY1 and CCS function, both MY and mutant F2 plants from a cross between MY and the 'MicroPep Red' (MR) accumulated basal levels of carotenoids, indicating that other PSY genes may complement the loss of PSY1. qRT-PCR analysis indicated that PSY2 was constitutively expressed in both MR and MY fruits, and a color complementation assay using Escherichia coli revealed that PSY2 was capable of biosynthesizing a carotenoid. Virus-induced gene silencing of PSY2 in MY resulted in white fruits. These findings indicate that PSY2 can compensate for the absence of PSY1 in pepper fruit, resulting in the yellow color of MY fruits.


Assuntos
Capsicum , Capsicum/genética , Carotenoides , Frutas/genética , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...